Importance of Data and Information for Disaster Risk Management

Daisuke KURIBAYASHI

Senior Researcher

International Centre for Water Hazard and Risk Management under the auspices of UNESCO (ICHARM),

Public Works Research Institute (PWRI), Japan

(Email: kuribaya@pwri.go.jp)

Contents

- 1. Significance of collecting and archiving data/information
- 2. Case study in Japan -Damage Data collection system (水害統計)-
- 3. ICHARM's challenge for risk management

1. Significance of collecting and archiving data/information

the importance of such indices and recommends the development of indicators for worldwide monitoring of progress in implementation of mandates in disaster risk reduction.

1. Significance of collecting and archiving data/information

•

•

•

By country level...

By municipality level..

By community level..

- To show effect and value of investment for disaster mitigation considering national budget (which contributes accountability for donor agencies)
- To develop disaster effective management plans
- To help residents realize disaster risks which are not realized in normal times and act properly for disaster mitigation

- Most of developing countries have not seen much progress in collecting and archiving data.
- Collecting and archiving data has become a global issue.

In stakeholder meetings •••

They decide a strategy, but • • •

Data collection and archiving is the basis for all disaster management.

1. Significance of collecting and archiving data/information

To Promote Integrated Flood Management (IFM)...

Enhancement of mutual collaboration among stakeholders by sharing disaster risk information is important!

4

1. Significance of collecting and archiving data/information

To Promote Integrated Flood Management (IFM)... (cont.)

Source: "Framework Document on Water and Climate Change Adaptation", Asia-Pacific Water Forum, 2012

For "Mutual collaboration" and "No-regret investments" ...

Common understanding by risk indices through utilization of data

1. Significance of collecting and archiving data/information

DIAS (Data Integration and Analysis System)

http://www.editoria.u-tokyo.ac.jp/projects/dias/

Source:

Flood damage amount:

1902-1935: Civil Engineering Bureau, Ministry of Home affairs. "Annual Statistics of Engineering Report No.30"

1936-1960: "Estimated Amount of Flood Damage after the War"

1961-: "Flood Statistics"

Flood control investment:

1902-1960: River Bureau. "Flood Statistics"

1960-: Economic Affairs Bureau. "Annual Report of Construction Works Statistics"

National Income:

1902-1942: Kazushi OKAWA (ed.)," The Growth Rate of the Japanese Economy since 1878"

1946-1951: Department of National Accounts. "Outline of Japanese Economy-Year 1957 Edition"

1952-1964:"Annual Report on National Income Statistics-Year 1978 Edition",

1965-: Annual Report on National Accounts-Year 1994 Edition1-Year 2001 Edition"

Figure 16 Decreased ratio of flood damage amount in national income

Source: "A study on Water Infrastructure Investment and its Contribution to Socioeconomic Development in Modern Japan Final Report, Japan Water Forum and The World bank" 8

by flood control infrastructure measures

Source: MLIT, Japan

3. ICHARM's challenge for risk management

Ex. A: "Assistance for the Philippines in the development of a flood disaster response plan"

- ICHARM assists Calumpit City in the Philippines in developing a flood disaster response plan.
- The city is damaged by flood every year, <u>but neither damage data nor other relevant data have been</u> <u>archived</u>.

BUT

Necessary to collect and archive the basic damage data

We have to consider "what kind of data" and "how" we should collect!

Ex. B: "Study on flood risk to private houses in the Pampanga River basin of the Philippines"

- An on-site interview survey was conducted to the residents.
- No significant relationship was found between inundation depth and damage
 - → Residents may not care about flood damage <u>because floods have long been</u> <u>a regular part of their life.</u>

- **Fig.** Relationship of household damage rates with the flood depth (Shrestha et al. 2014)
- \rightarrow Now considering assessing inconveniences in daily life as risk instead of damage in monetary terms.

Important to understand flood damage from multi-perspectives, based on local needs and conditions.

3. ICHARM's challenge for risk management

Ex. C: Development of Smartphone Application for Self-Inspection for Flood Damage to Buildings

• Homeowners upload building damage \downarrow

Damage level are easily judged with less work load

Ex. D: "Quantitative assessment of agricultural flood risk in the Pampanga River basin of the Philippines" (a) September

Fig. 1 Developed flood damage curves for ricecrops (Shrestha et al. 2014)

Original rice damage curve established by statistical data

Fig. 2 Calculated agricultural damages for the September 2011 flood, 50- and 100 -years return -period flood cases (500 m \times 500 m).

Agricultural risk assessment using ICHARM inundation analysis (RRI model)

3. ICHARM's challenge for risk management

Mandalay

Mandalav

Nay Pyi

P

Ex. E: "Risk assessment and management in Myanmar (ADB project)" using RRI model

A good example of local practice by ICHARM, which excels at conducting hydrologic and hydraulic research and risk management research as one package in basins with low data availability.

- RRI model can identify flood inundation areas even with limited data and information, e.g., only by using satellite products.
- Risk assessment is conducted along with several meetings with local officers.
- It has been a challenge to propose an effective risk management approach under limited data availability.

Simulation by RRI model

Calculated and observed inundation areas around Magway Province (6 August 2015)

3. ICHARM's challenge for risk management

For disaster-resilient society...

 $\checkmark\,$ Damage data collection and archiving

+

✓ Risk assessment based on hazard simulation

 Human, Institutional, and social capacity

Ex. F: "Flood risk reduction using FDPI (Flood DisasterPreparedness Indices)"fdpi.jp

- Self-assessment tool to evaluate the present level and progress in local preparedness for the flood hazard by several indices.
- Available in 14 languages.
- The indices help each locality identify which activity of local preparedness should be improved.

- Evaluation of disaster preparedness
- Visualization of your weakness
- ✓ Easy for self-evaluation
- ✓ Cost-free and periodic evaluation

Score is shown in octagonal chart

4. Conclusion

- Risk management starts from hazard and risk assessment, which demand data collection and archiving.
- Data should be accumulated place by place because even for the same severity of hazard, resulting damage may differ due to the differences in social vulnerability and economical conditions.
- Flood damage statistics has been conducted in Japan over 60 years. Japan has been successful to reduce flood damage by utilizing data-driven risk analysis for actual investment.
- The characteristics of ICHARM, which can conduct both hydrological analysis and risk assessment at once even in areas with low data availability, have been proven highly advantageous in many projects.

Thank you for your attention!

TH A

PWRI and Mt. Tsukuba

