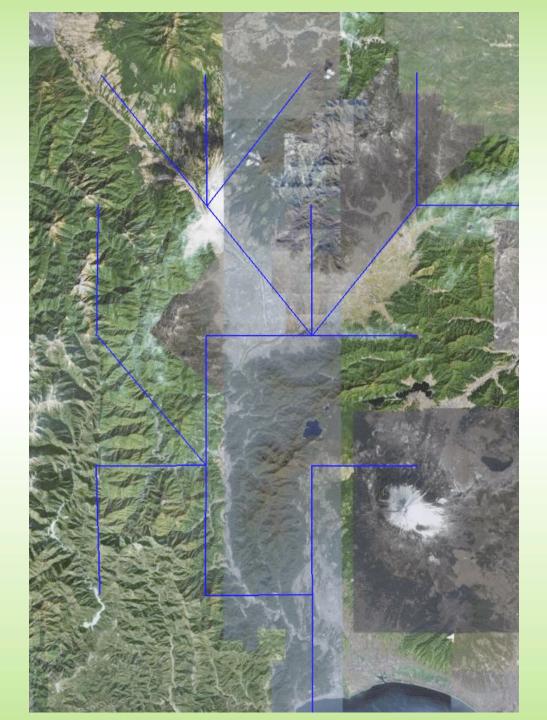

Local ownership of flood forecasts

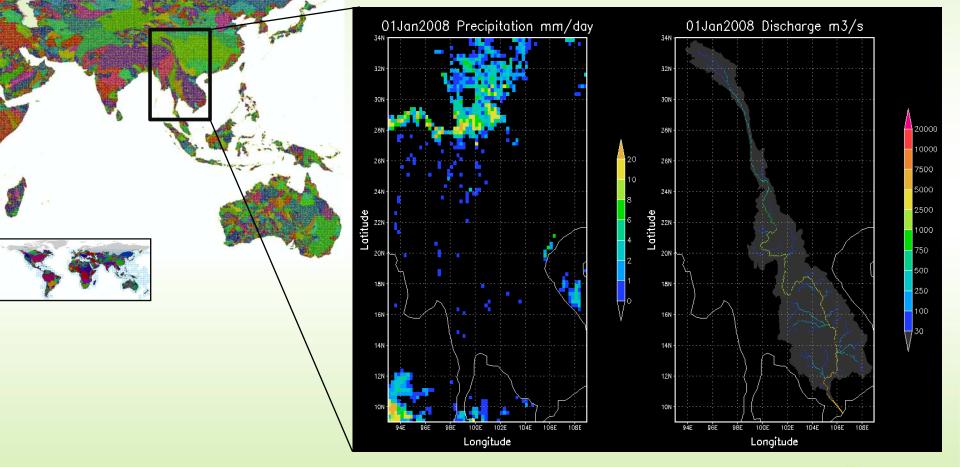


Conserves elevation, river length and gradient
 Enables hydrological simulation independent of spatial resolution

High level resolution 3''(=90m original), 6'', 9'', 12'', 15'' Middle level resolution 0.5' (about 1km), 1', 2', 3', Low level resolution 5' (=10km), 10''

90m-20km 11 levels HARM

Jun Magome


Fuji River, Japan Shown are rivers with catchment area $\ge 2km^2$

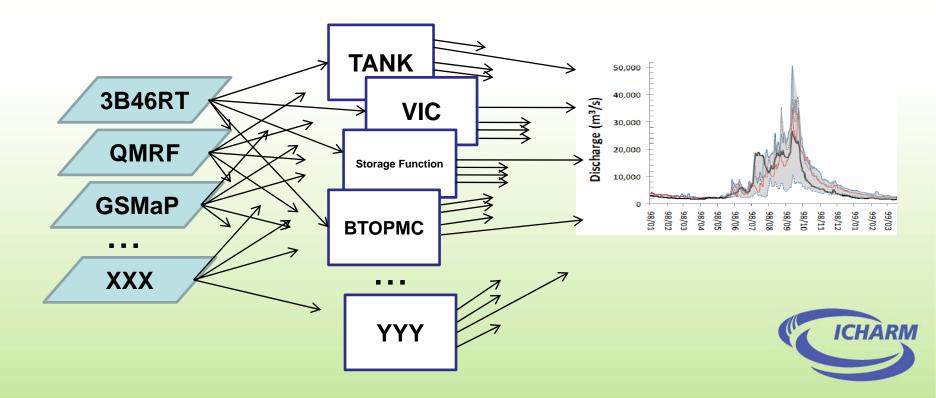
90 m	3"
200 m	6"
300 m	9"
400 m	12"
500 m	15"
1 km	0.5'
2 km	1'
4 km	2'
6 km	3'
10 km	5'
20 km	10'

"Real-time" "worldwide" nowcasts Using the globally available data as default inputs

Jun Magome, 2008

Example : BTOP Model + TMPA 3B42RT

"Real-time" "worldwide" nowcasts Integration with Flood Inundation Model



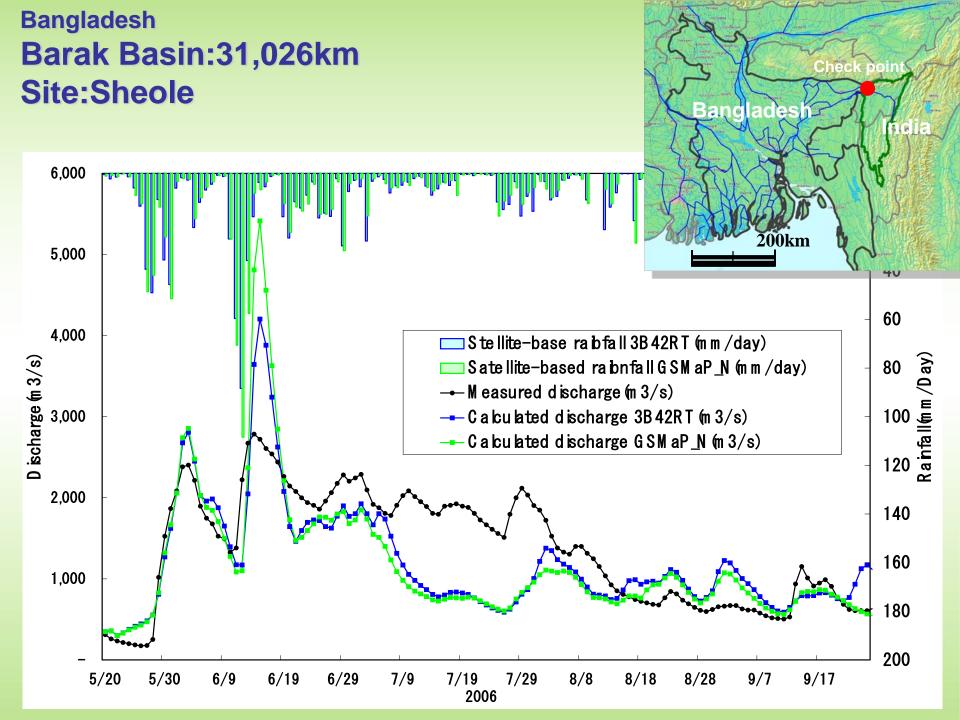
"Real-time" "worldwide" nowcasts Using the globally available data as default inputs

Туре	Elements	Source (standard data sets)	
pu	DEM	USGS-GTOPO30, Hydro1K, SRTM, HydroSHEDS, ICHARM(MSI	R)
	Flow direction map	USGS-GTOPO30, Hydro1K, SRTM, HydroSHEDS, ICHARM(MSI	R), IFAS-Tool
Soil and ata	(Sub) Basin Boundary	USGS-GTOPO30, Hydro1K, GDBD, SRTM, HydroSHEDS, ICHA	RM(MSR), IFAS-Tool
	Root Depth	literature values (LiteraSellers et al., 1994,1996)	
Lanc ion (River width	Assumed from contributing area (Lu et al., 1989)	
Topography, Land, So Vegetation data	Soil Map	FAO-DSMW	
grap Veç	Soil Type	USGS soil clasification (Rawls et al., 1982, 1985)	
òodo	Soil Properties	FAO	
P	Land Cover Type	GLCC/IGBP V2	
	NDVI	NOAA-AVHRR (GIMMS etc), Spot Vegetation	
Hydro-Met data	Precipitation	Satellite Delived Dataset (TMPA, CMORPH, GSMaP etc) Reanalysis Dataset (NCEP, ERA-40(ECMWF), JRE-25 etc) Lo Forecast (NOAA/NWS, ECMWF etc)	ocal ground observations
	Daylight duration	Reanalysis Forecast Climatic data set (CRU TS(CRU/EAU))	
	Observed discharge	Local ground obs. GRDC, Mekong River Hydrological Yearbook, etc.	Jun Magome 2008

Multi-input multi-model ensemble Approach: IFAS Platform

- From Model Inter Comparison to Input/Model Ensemble Forecast to indicate uncertainty band
- Identify the conditions of inputs and models to become a member of ensemble

TRAINING WORKSHOP FOR THE GLOBAL FLOOD ALERT SYSTEM (GFAS) VALIDATION 3-8 Oct, 2008 JAPAN


Objective

 Capacity development for local practitioners to validate GFASrainfall and translate it to GFAS-streamflow in ungaged or poorly gaged basins.

Participants from

 Ethiopia, Zambia, Cuba, Argentina, Bangladesh, Guatemala, Nepal (7countries)

Disaster Preparedness Indicators & Standards as a tool to guide local practices

Indicators to check and monitor & Standards to guide for society to come into a continuous positive spiral towards better preparedness against disasters.

The standard is not a list of facilities nor equipments to be installed, but rather a list of **institutional procedure** that any community commit to follow to assure **a positive spiral** operate in its community management system leading to a continuous improvement in disaster preparedness.

Flood Disaster Risk Indicators R=HxV_BxE/C

Disaster Risk

- Human Damage: deaths/causalities, affected, displaced
- Economic Losses: direct, indirect
- Goods: house hold gods, commercial goods, production goods, agricultural, energy, foods, cultural heritage
- Properties: buildings, public infrastructure, landscapes
- Livelihood: business continuity, traffic, lifeline services
- Environmental damage: Environment, ecology, pollution
- Duration, frequency, timing, spatial extent affected

Natural Hazard

- Magnitude, intensity, duration, frequency
- Timie and place of occurrence
- Human amplification activities: deforestation, slop
 development
- Human mitigation activities: artificial rainfall

Societal Basic Vulnerability

- Poverty: GDP, Economic Vulnerability Index
- Governance: accountability, compliance, political stability, administrative efficiency, discipline, legal preparedness, bribe control
- Health, nutritious, handicapped, sick population
- Demographic composition: infants, maternity, elderly population

- Education level: illiteracy, IT illiteracy
- Institutional arrangement for weak & vulnerable people, squatters
- Social Capital, mutual help

Exposure

- Population, economic activities and their density in risk areas: active faults, active volcanic areas, flood plain, high slopes, landslide areas, zero meter areas, reclaimed areas
- Land use control: industrial area regulation, urban inundation acceptance, regulation and incentives, tax reduction, subsidy

Coping Capacity

- Structural infrastructure: dams, dikes, diversions, sabo works, urban storage & infiltration facilities, piloti houses,
- Nonstructural infrastructure as below:
- Preparedness: risk assessment, hazard maps, its use, drills
- Early warning: observation stations, data transmission/processing, dissemination media, research
- Evacuation, shelter, relief & recovery supports, volunteers
- Institutional structure: central/local prevention/emergency response structure, local community defense forces
- Finance: prevention, emergency, recovery, ODA, S/T Research funds
- Culture, education, training: traditional/indigenous culture, school disaster education, multi hazard drills.