

# DEVELOPMENT OF AN INTEGRATED AND INTERDISCIPLINARY FLOOD RISK ASSESSMENT INSTRUMENT

M. Pahlow<sup>1</sup>, J. Dietrich<sup>1</sup>, D. Nijssen<sup>1</sup>, Y. Hundecha<sup>1</sup>, B. Klein<sup>1</sup>, C. Gattke<sup>1</sup>, **A. Schumann**<sup>1</sup>,

M. Kufeld<sup>2</sup>, C. Reuter<sup>2</sup>, J. Köngeter<sup>2</sup>, H. Schüttrumpf<sup>2</sup>,

J. Hirschfeld<sup>3</sup> and U. Petschow<sup>3</sup>

<sup>1</sup>Institute of Hydrology, Water Resources Management and Environmental Engineering, Ruhr-University Bochum, Bochum, Germany

<sup>2</sup>Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany

<sup>3</sup>IÖW, Institute for Ecological Economy Research, Berlin, Germany











# Structure

- . Introduction
- II. Specific Problems
- III. Methodology
  - I. Hydrological Loads and Risks
  - II. Multiple Criteria Decision Making (MCDM) and DSS
- IV. Results











# 12 Actions for Change



- 1. Employ integrated, comprehensive and systems-based approach
- Employ risk-based concepts in planning, design, construction, operations, and major maintenance
- 3. Continuously reassess and update policy for program development, planning guidance, design and construction standards
- 4. Employ dynamic independent review
- 5. Employ adaptive planning and engineering systems
- 6. Focus on sustainability
- 7. Review and inspect completed works
- 8. Assess and modify organizational behavior
- 9. Effectively communicate risk
- 10. Establish public involvement risk reduction strategies
- 11. Manage and enhance technical expertise and professionalism
- 12. Invest in research











# Objectives



- Risk based approach in flood planning
- Evaluation of interacting flood retention facilities in river basins
- Consideration of hydrological complexity by imprecise flood probabilities
- Spatial distributed characteristics:
  - Natural system (interactions of tributaries)
  - Spatial distribution of flood retention facilities
  - Spatial distribution of potential flood damages

Development of a DSS- prototype for interactive MCDMbased planning of flood retention facilities in river basins



nstrumen









# Structure

- I. Introduction
- II. Specific Problems
- III. Methodology
  - I. Hydrological Loads and Risks
  - II. MCDM and DSS
- IV. Results











# Safety versus Risk-Oriented Approach in Planning

# Safety-Oriented **Approach**

Choice of design flood Q<sub>design</sub> (e.g. 100 year flood)



Design

Technical flood control fully functional for  $Q \leq Q_{design}$ 



Assumption: No risk of failure for  $Q \le Q_{design}$  and negligible beyond Č

# **Risk-Oriented Approach**

100 % safety can not be achieved by technical means



Risk of failure

Hydrological Risk Operational/Technical Risk



Risk Management required









# Problems Risks, Interactions, Spatial characteristics

## Natural Risk

- Hydrological variability and complexity results from interactions between watersheds and meteorological conditions
- Probability distribution functions of flood peaks describe only one part of multivariate statistical processes

Performance of technical flood retention facilities

Depends on complex characteristics of floods









# nterdisciplinary flood risk assessment An integrated and in instrument

# Problems | Hydrological Risk of flood protection by technical retention













# Problems Risks, Interactions, Spatial characteristics

#### **Natural Risk**

- Hydrological variability and complexity results from interactions between watersheds and meteorological conditions
- Probability distribution functions of flood peaks describe only one part of multivariate statistical processes

#### Performance of technical flood retention facilities

- Depends on complex characteristics of floods
- Risk of unexpected flood situations depend on technical parameters, flood characteristics, operation

## Consideration of spatial structures in decision making

- Differences between local and regional goals in flood protection
- Local and regional interests of decision makers and stakeholders
- Flood protection as a spatial open process









Problems Risks, Interactions, Spatial characteristics

Unstrut River Basin, divided by two Federal States: Thuringia and Saxony-Anhalt



Watershed: 6.343 km<sup>2</sup> Storage Volume:

approx. 100 Mio. m<sup>3</sup>: 2 dams,1 flood channel, 4 polders









reservoir

Thuringia

Saxony-Anhalt

Legend

50 Kilometers

## **Problems**

erdisciplinary flood risk assessmen

and

An integrated

instrumen

# Planning of flood retention by new and extended polders



System State 1:Status Quo



System State 2: Current system is fully functional



System State 3: System State 2 + new (small) polders upstream



System State 5: System State 4 + controlled operation



System State 6:System 5 + increased inlet structures



System State 4: State 2+ new (large) polders upstream









# Structure

- I. Introduction
- II. Specific Problems
- III. Methodology
  - I. Hydrological Loads and Risks
  - II. MCDM and DSS
- IV. Results









# and interdisciplinary flood risk assessment An integrated instrument

# Methodology System Analyses, DSS

Tuesday, 6 May 2008, 16:00 a.m., Room E Presentation by Pahlow et al. "Assessment and optimization of flood control systems: The Unstrut River case study"

Wednesday, 7 May 2008, 11:00 a.m., Room B Presentation by Klein et al. "Probabilistic Analysis of Hydrological Loads to Optimize the Design of Flood Control Systems"

Thursday, 8 May 2008, 8:00, Room E Presentation by Kufeld et al. "Interlinked modelling of large floods by combining one and two dimensional diffusive wave approaches"











A RIMAX- Research Project

- Differentiation of Alternatives

















# An integrated and interdisciplinary flood risk assessment instrument

# Methodology Hydrological Loads

# Interactions of tributaries















# Methodology Hydrological Loads

# Copula

**Probabilistic Analyses** 





Multivariate statistics for reservoir sides: Copula analyses of peak and volume



instrument

An integrated and interdisciplinary flood risk assessment







# **Uncertainties of Return Periods**



Scenarios with the same return period of flood peaks differ in their Copula return period:

Fuzzy representation, considering these differences in probabilities



nstrumen

An integrated and in

nterdisciplinary flood risk assessment









# Straußfurt 1\_2837 return period 200 years















# Structure

- . Introduction
- II. Specific Problems
- III. Methodology
  - I. Hydrological Loads and Risks
  - II. MCDM and DSS
- IV. Results



















# Methodology An integrated and interdisciplinary flood risk assessmen instrumen

# **MCDM**

## **Tool Selection**

## Flood Management Problems:

- extremely complex
- time-bound
- multi-faceted
- conflicting priorities
- dynamic preferences
- high decision stakes
- limited technical information
- difficult tradeoffs

## **Operational/Technical Requirements:**

- combining tangibles & intangibles
- allowing fuzzy data
- calculating feedback & interdependence
- easy to use
- possibility to build-into DSS

### **MCDA**

- Utility theory
- •PROMETHEE
- •ELECTRE
- •AHP/ANP
- •TOPSIS
- •CP
- •NAIADE



Saaty, 1990, 2005









**Analytic Network Process** 

Decision Making with Dependence and Feedback

# Two parts:

- First: a control hierarchy or network of objectives and criteria that control the interactions in the system under study;
- Second: many sub-networks of influences among the elements and clusters of the problem, one for each control criterion











## **MCDM**



#### AHP Criteria

#### **Benefits:**

#### **Psycho-social benefits**

P1: Reduction of Risk of Affected People

P2: Reduction of Risk at "Hot Spots of Vulnerability"

P3: Reduction of Risk of Psychological damages

#### **Economic Factors**

D1: Reduction of Risk of Direct Damages D2: Reduction of Risk of Indirect Damages (traffic, regional development, unemployment, ecological damages, market situation)

#### **Downstream Effects**

G1: Hydraulic Benefits for locations downstream: Gauge at outlet

#### Costs:

C1:Cost of Operation and Maintenance

**C2: Construction Costs** 

C3: Implementation Costs (esp. relocation and land-use changes)

#### **Opportunities** (Considered not yet):

Social: Personnel/ Employment in Flood Protection?

Ecological: substitution of intensified agriculture in polder areas (may arise a risk to use

retention areas caused by new ecological developments!)

#### Risks:

Ecological: Contamination of polders by flooding Economic: Socio- economic risks caused by reduced carrying capacity of agriculture

**Downstream-Upstream Risk Trading** 









# An integrated and interdisciplinary flood risk assessment instrument

# The Fundamental Scale: Numerical Ratings Associated with Pairwise Comparisons

| Intensity of Importance | Definition                             | Explanation                                                                                      |  |  |  |  |
|-------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| 1                       | Equal Importance                       | Two activities contribute equally to the objective                                               |  |  |  |  |
| 2                       | Weak                                   |                                                                                                  |  |  |  |  |
| 3                       | Moderate Importance                    | Experience and judgement slightly favour one activity over another                               |  |  |  |  |
| 4                       | Moderate plus                          |                                                                                                  |  |  |  |  |
| 5                       | Strong Importance                      | Experience and judgement strongly favour one activity over another                               |  |  |  |  |
| 6                       | Strong plus                            |                                                                                                  |  |  |  |  |
| 7                       | Very strong or demonstrated Importance | An activity is favoured very strongly over another; it's dominance demonstrated in practice      |  |  |  |  |
| 8                       | Very, very strong                      |                                                                                                  |  |  |  |  |
| 9                       | Extreme Importance                     | The evidence favouring one activity over another is of the highest possible order of affirmation |  |  |  |  |

(Saaty and Vargas, 2006)



















# Methodology An integrated and interdisciplinary flood risk assessment instrument

# MCDM

# Hierarchic order of criteria











# **MCDM**



# Interdependencies of criteria



#### Benefits:

P1: Reduction of Risk of Affected People

P2: Reduction of Risk of Vulnerable Points

P3: Reduction of Risk of Psychological Damage

D1: Reduction of Risk of Direct Damage

D2: Reduction of Risk of Indirect Damage

G1: Hydraulic Benefits: Flood reduction downstream

#### Costs:

C1: Recurring Costs

**C2:** Construction Costs

**C3: Implementation Costs** 



instrument







# MCDM - AHP Criteria



Dependencies Economic Risk





Interrelatedness of Alternatives: dependency of alternatives on/of another

- Construction of new Polders encompasses optimisation of existing facilities
- Enlargement of Inlets encompasses optimisation of inlet management



Dependencies of Economic Risks: Categorising influence of different criteria on economic risk

- Alternatives: compare relative influence of each alternative on economic risks
- Psychosocial Risks: relative influence of affected number of people, vulnerable places, ...
- Downstream Risk: influence of downstream risk on (indirect) economic risks



Interrelatedness of Economic Risks: dependency of economic risks on another

Indirect damage is related to the intensity of direct damage



nstrumen







# MCDM - AHP Criteria



# Dependencies





Dependencies of Psychosocial Risks: Influence of criteria on psychosocial risks

- Alternatives: compare relative influence of each alternative on psychosocial risks
- Economical Risks: relative influence of direct and indirect damages on psychosocial risks
- Downstream Risk: possible influence of downstream risks on psychosocial risks upstream



Interrelatedness of Psychosocial Risks: dependency of psychosocial risks on another

- Number of people is related to the number of affected vulnerable points
- Psychological damages is related to number of people and affected vulnerable points



instrument







# Methodology An integrated and interdisciplinary flood risk assessment instrument

# MCDM - AHP Criteria

# Dependencies





Low dependency

Middle dependency

High dependency\*

\* Note: Dependency can be altered by the Decision Maker









| Methodology                                                                                                    | MCDM ANP In                     | dividual Compa                   | risons                          |                                       |                        |                                         |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------------|------------------------|-----------------------------------------|
| 37                                                                                                             | WODW/WW III                     |                                  | Intensity of Importance         | Definition                            | Ехр                    | olanation                               |
|                                                                                                                |                                 |                                  | 1                               | Equal Importance                      |                        | ntribute equally to the pjective        |
|                                                                                                                | Goals                           |                                  |                                 |                                       |                        | gement slightly favour one over another |
| and interdisciplinary flood risk assessment                                                                    | With Respect to <b>Benefits</b> | Economic Psycho<br>Risks Risks   | Social Downstream<br>Risks      | EigenVec Global Priorities            | _                      | ement strongly favour one over another  |
| SSI                                                                                                            | Economic Risks                  | 1,000                            | 2,000 4,000                     |                                       | .537                   |                                         |
| G (G)                                                                                                          | Social Risks Alterna            | tives                            | 1 000                           |                                       | An activity is favo    | ured very strongly over<br>ated in      |
| S                                                                                                              | Downstream Risks                | ives                             |                                 |                                       |                        |                                         |
|                                                                                                                | Inconsistency Indewith Re       |                                  | State System                    | System Syst                           |                        | ity over                                |
| =======================================                                                                        | Risk of I<br>System             | Direct Damages 1                 | State 2 Syste 1,000 0,500       | m State 3 State 4 Stat<br>0,400 0,333 |                        | Priorities order of 0,045               |
| D WILLIAM                                                                                                      | System                          | State 2                          |                                 | 0,400                                 | 0,200 0,143 0          | ,120 0,043                              |
| <u>0</u>                                                                                                       | System                          |                                  | cical Risks                     |                                       |                        |                                         |
| Z W                                                                                                            | System System                   | State 5                          |                                 |                                       | Ne                     | ormalised Matrix                        |
| Tall Market                                                                                                    | System                          | Interdene                        |                                 |                                       | sychological Research  | illialiseu Maurx                        |
|                                                                                                                | Inconsis                        | tency Index: Affected I          |                                 | 0.000 0.200                           | 7.000 0.00             | 0.583 0.500                             |
| <u> </u>                                                                                                       |                                 | Vulnerabl                        | e Points                        |                                       |                        |                                         |
| dis                                                                                                            |                                 | Psycholog                        | cical Damage                    | nic Risks                             | •                      |                                         |
| <u> </u>                                                                                                       |                                 |                                  | With Re                         | espect to:                            | Direct Indirect        | EigenVec                                |
| .⊑                                                                                                             |                                 |                                  |                                 | hological Damage                      | Damages Damage         |                                         |
| pu                                                                                                             | Costs                           |                                  | Direct I                        | Damages                               | 1,000                  | 7,000 1,000                             |
| 0                                                                                                              | Costs                           |                                  |                                 |                                       |                        | 1,000 0,143                             |
| 9                                                                                                              | Alternatives                    |                                  |                                 |                                       |                        |                                         |
| rat                                                                                                            |                                 |                                  |                                 |                                       |                        |                                         |
| eg                                                                                                             |                                 |                                  |                                 | ystem system s                        | nVec <sub>Local</sub>  |                                         |
| An integrated instrument                                                                                       |                                 | State 1 State 2 S<br>1,000 1,000 | tate 3 State 4 S<br>0,500 0,500 | tate 5 State 6<br>0,500 0,143         | Priorities 0,124 0,063 |                                         |
| THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN | System State                    |                                  |                                 |                                       | U.144 U.UUJ 8          |                                         |
|                                                                                                                | System State 1 System State 2   | 1,000 1,000                      | 0,500 0,500                     | 0,500 0,200                           | 0,133 0,067            |                                         |









# MCDM ANP Results



| Priorities Benefits |         |
|---------------------|---------|
| Ideal Form          |         |
| System State 1      | 0,12598 |
| System State 2      | 0,27068 |
| System State 3      | 0,35386 |
| System State 4      | 0,53945 |
| System State 5      | 0,64608 |
| System State 6      | 1       |

| Priorities Costs |         |
|------------------|---------|
| Ideal Form       |         |
| System State 1   | 0,12688 |
| System State 2   | 0,139   |
| System State 3   | 0,26316 |
| System State 4   | 0,39538 |
| System State 5   | 0,41126 |
| System State 6   | 1       |

| Priorities of the Criteria          |            |
|-------------------------------------|------------|
| Ideal Form                          |            |
| Direct Damage                       | 0,31388836 |
| Indirect Damage                     | 0,10302344 |
| Reduction Risk Affected People      | 0,23998598 |
| Reduction Risk Vulnerable Points    | 0,1797751  |
| Reduction Risk Psycholgical Damages | 0,07276836 |
| Reduction Risk Downstream           | 0 09055875 |

| Priorities General = bB+c(1-C) | b=      | 1c=       | 1              |           |
|--------------------------------|---------|-----------|----------------|-----------|
| Total                          |         | Normalise | d              |           |
| System State 1                 | 0,9991  | S         | System State 1 | 0,8091027 |
| System State 2                 | 1,13167 | S         | System State 2 | 0,9164662 |
| System State 3                 | 1,0907  | S         | System State 3 | 0,8832823 |
| System State 4                 | 1,14406 | S         | System State 4 | 0,9265006 |
| System State 5                 | 1,23482 | S         | System State 5 | 1         |
| System State 6                 | 1       | S         | System State 6 | 0,8098322 |



instrument







# MCDM ANP Supermatrix



| Benefits                                                  |              |                | Paycho      | ocial R             | lloiko               |                |                |              |                   |                   |                   |                   |                   |
|-----------------------------------------------------------|--------------|----------------|-------------|---------------------|----------------------|----------------|----------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                           | Econo<br>Rio |                |             |                     |                      | Downst         |                |              | Allen             | ativen            |                   |                   |                   |
|                                                           | D1           | D2             | P1          | P2                  | P3                   | ream<br>S1     | A1             | A2           | A3                | A4                | <b>A</b> 5        | AE                |                   |
| Unweighted Supermatrix                                    | ы            | UZ             | PI          | P4                  | Reducti              | 91             | Al             | PLE          | Ma                | M                 | MO                | AC                |                   |
|                                                           |              |                | Reducti     | Reduct              | on Risk              |                |                |              |                   |                   |                   |                   |                   |
|                                                           |              |                |             |                     | Paycho               |                |                |              |                   |                   |                   |                   |                   |
|                                                           |              |                |             |                     | logical              |                | Carolina and   | Out to the   | Our land          | Our land          | G.,               |                   |                   |
|                                                           | Damag        |                | d<br>People |                     | DEMEG                | roem<br>Iowner | System State 1 | State 2      | System<br>State 3 | System<br>State 4 | System<br>State 5 |                   |                   |
| 급 Direct Damage                                           | 0,000        |                |             |                     |                      | 0,000          | 0,750          | 0,750        | 0,760             | 0,760             |                   |                   | 760               |
| ☐ Direct Damage ☐ Indirect Damage Reduction Risk Affected | 0,000        |                |             | 0,126               |                      |                | 0,250          | 0,250        | 0,250             | 0,250             |                   |                   | 260               |
| P1 People Reduction RiskVulnerable                        | 0,786        | 0,105          | 0,000       | 0,583               | 0,500                | 0,000          | 0,455          | 0,405        | 0,405             | 0,406             | 0,40              | D <b>6</b> 0,     | 405               |
| P2 Points Reduction Risk Psychological                    | 0,149        | 0,258          | 0,972       | 0,000               | 0,500                | 0,000          | 0,455          | 0,481        | 0,481             | 0,481             | 0,40              | 91 O,             | ,481              |
| P3 Damages                                                | 0,066        | 0,637          |             |                     |                      |                |                |              |                   |                   |                   |                   |                   |
| ⊼ Reduction Risk Downstream                               | 0,000        |                | Benefit     |                     |                      |                |                |              |                   | Alterna           | atives            |                   |                   |
| System State 1 System State 2                             | 0,045        |                | Limit St    | permeb              | rbc                  |                |                | A1           | A2                | A3                | A4                | A5                | A6                |
|                                                           | 0,071        |                |             |                     |                      |                |                |              |                   |                   |                   |                   |                   |
| System State 3                                            |              | 0,100          |             |                     |                      |                |                |              |                   |                   |                   |                   |                   |
| System State 4                                            |              | 0,176          |             |                     |                      |                |                | System State |                   | System<br>State 3 | System<br>State 4 | System<br>State 5 | System<br>State 6 |
| System State 5 System State 6                             |              | 0,228<br>0,379 |             | stem St             | aha 4                |                |                | 0,01         |                   |                   |                   |                   |                   |
|                                                           | <u> </u>     | <u> </u>       |             | stem St             |                      |                |                | 0,02         | -                 |                   |                   |                   |                   |
|                                                           |              |                |             | stem St             |                      |                |                | 0.03         |                   |                   | 0,0386            | 0,0386            |                   |
|                                                           |              |                |             | stem St             |                      |                |                | 0,05         |                   | _                 | 0,0589            |                   |                   |
|                                                           |              |                |             | stem St             |                      |                |                | 0,07         |                   |                   |                   |                   |                   |
|                                                           |              |                |             | stem St<br>stem St  |                      |                |                | 0,07         |                   |                   | 0,1091            |                   | 0,1091            |
|                                                           |              |                |             | scem So<br>rect Den |                      |                |                | 0,10         |                   |                   |                   | 0,1091            |                   |
|                                                           |              |                |             |                     |                      |                |                |              |                   |                   | 0,2133            |                   |                   |
|                                                           |              |                |             | ilrect De           |                      | alad Day       | -1-            | 0,07         | \\                |                   | 0,0700            |                   |                   |
|                                                           |              |                |             |                     | Risk Affe            |                |                | 0,16         |                   |                   | 0,1631            | 0,1631            | 0,1631            |
|                                                           |              |                |             |                     | Risk Vuin            |                |                | 0,12         |                   |                   |                   |                   |                   |
|                                                           |              |                |             |                     | Risk Psy<br>Risk Dow |                | Demeges        | 0,04         | 7                 |                   |                   |                   |                   |
|                                                           |              |                | Ø Re        | 0.0.00001           | KISK LXXX            | naurdam        |                | 0,08         | 0,081             | 5 0,061 <u>5</u>  | 0,0615            | 0,0615            | 0,0615            |









#### Methodology Spatial aggregation of criteria Weighted Spatial interests nent Aggregation of criteria in Two- dimensional space Decision Decision problem $g_{k1}$ matrix for the $g_1 g_2 g_3$ representeted as map of a<sub>2</sub> 3 2 3 a<sub>3</sub> 3 2 2 total area 2 3 $a_1$ decision matrices $g_{k2}$ k<sub>1</sub> k<sub>2</sub> k<sub>3</sub> a<sub>1</sub> 3 1 4 a<sub>2</sub> 4 2 3 a<sub>3</sub> 2 2 2 4 2 3 $a_2$ k<sub>1</sub> k<sub>2</sub> k<sub>3</sub> a<sub>1</sub> 2 2 3 erdisciplinary flood $g_{k3}$ 2 2 2 $a_3$ a<sub>2</sub> 2 3 Path 1: Balance criteria Aggregation of Aggregation of $f_{r1}$ $f_{r2}$ $f_{r3}$ of the total criteria criteria in spatial units system Path 2: Spatial interests, Balance and local options f<sub>k</sub> a<sub>1</sub> 2 a<sub>2</sub> 3 a<sub>3</sub> 2 separated f,g An integrated $a_1$ g Map of Total f<sub>k</sub> a<sub>1</sub> 3 a<sub>2</sub> 3 a<sub>3</sub> 2 nstrument $a_2$ f<sub>k</sub> a<sub>1</sub> 2 a<sub>2</sub> 3 a<sub>3</sub> 3 aggregated evaluation of $\mathbf{a}_3$ alternatives Aggregation of alternatives spatial units after van Herwijnen & Rietveld (1999)









# An integrated and interdisciplinary flood risk assessment Instrument

# **ANP Results**















# DEVELOPMENT OF AN INTEGRATED AND INTERDISCIPLINARY Summary FLOOD RISK ASSESSMENT INSTRUMENT



- Hydrological Risk:
  - Modeling of the river basin to generate the data base, Copula Analysis, Imprecise probabilities, 6 classes of return periods with 5 realizations of floods with different characteristics,
- Spatial interdependencies:
  - Upstream downstream preferences
- Interactions of criteria and alternatives
  - ANP
- Further Steps:
  - Integrating of uncertainties
  - Integrating of operational risks of flood retention structures



An integrated and







"Decision-makers don't know what they want until they know what they can get" (Loucks et al. 2005)

# From our point of view:

They should also know what they can't get!

# Thank you for funding:





Thank you for your attention!

# Thank you for support:













