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Decision under Uncertainty

m Uncertainty often missing
In (German) flood predic-
tion systems

m May affect decisions taken.
e.g. Reservoir management

m Balance between informa-
tion content and ease of
communication

m Exceedence probabilities !

and corresponding flood
loss estimation
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m Eastern Ore mountains at
the Czech-German border
Total area of 384 krh
Two large multipurpose
reservoirs in the Wilde
Weisseritz

m  August 2002: severe flood-
Ing: Dresden main train sta-
tion and villages along the
river.
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Deterministic, distributed rainfall-runoff model (Schula
Jasper 1999)
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Describes the soil water based on the TOP-model approach
(Beven & Kirkby 1979)
Macro pores are described with an extension by Niehoff et al.
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m  Based on transformation of
data to normal distributions. Transition probability

=1

m First order transition proba-
bility

0
I O

discharge t

discharge t=0

R. Krzysztofowicz and K. S. Kelly. Hydrologic uncertainty processor for
probabilistic river stage forecastingyATER RESOURCES RESEARCH,
36(11):3265-3277, 2000
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Conceptual, distributed
rainfall-runoff model (Lud-
wig and Bremicker, 2007)

Provides methods for oper-
ational flood forecasting
Flood predictions calcu-
lated at the Bavarian Flood
Warning Center
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estimated damage

m  FLEMO: losses depending on water level, building type and building
guality/size.

m  Second stage: effects of private precautionary measure and
contamination of the floodwater.

H. Kreibich, 1. Seifert, et alHydrological Sciences Journal, submitted.

A.H. Thieken and H. KreibichJournal of Hydrology, submitted.
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f;:rjogical = Neither source of uncertainty can be excluded a priori
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oncusions [0 uncertainty of radar now-casting
Acknowledgments 0 precipitation dependent hydrological uncertainty processo
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