

Bivariate Flood Frequency Analysis using Copula with Parametric and Nonparametric Marginals

Subhankar Karmakar Slobodan P. Simonovic

The University of Western Ontario The Institute for Catastrophic Loss Reduction

Presentation outline

- Introduction
- Objectives of the study
- Study area
 - Data and flood characteristics
- Marginal distributions of flood characteristics
 - Parametric and nonparametric estimation
- Joint and conditional distributions using copula
- Conclusions

Introduction

 Flood management (design, planning, operations) requires knowledge of flood event characteristics

Introduction

Simonovic

Introduction

Simonovic

Study objectives

- To determine appropriate marginal distributions for peak flow, volume and duration using parametric and nonparametric approaches
 - To define marginal distribution using orthonormal series method
- To apply the concept of copulas by selecting marginals from different families of probability density functions
- To establish joint and conditional distributions of different combinations of flood characteristics and corresponding return periods

Study area

- Red River Basin
- 116,500 km² (89% in USA 11% in CDN)
- Flooding in the basin is natural phenomena
- Historical floods: 1826; 1950; 1997
- Size of the basin and flow direction
- No single solution to the flood mitigation challenge

Study area - data

- Daily streamflow data for 70 years (1936-2005)
- Gauging station (05082500) Grand Forks, North Dakota, US
 - Location latitude 47°55'37"N and longitude 97°01'44"W
 - Drainage area 30,100 square miles
 - Contributing area 26,300 square miles
- http://waterdata.usgs.gov

Study area – flood characteristics

Dependence between P, V and D

	Pearson's Linear	Kendall's	Spearman's rho
Flood Characteristics	Correlation	Coefficient of	Correlation
	Coefficient	Correlation	Coefficient
Peak Flow-Volume	0.9359	0.7892	0.9150
Volume-Duration	0.6934	0.5756	0.7313
Peak Flow-Duration	0.5306	0.4033	0.5182

- P and V highly correlated
- All the correlations positive

Marginals - parametric

Wester

PDF		Parameters				
FDI		Peak Flow (P)	Volume (V)	Duration (D)		
Exponential: $f_X(x) = \frac{1}{\eta} e^{-x/\eta}$; $x > 0$	η	0.0159	0.0013	0.0245		
Gamma: $f_X(x) = \frac{\lambda^{\beta} x^{\beta-1} e^{-\lambda x}}{\Gamma(\beta)}; \ x \ge 0, \lambda > 0, \beta > 0$	λ	39.956	885.81	5.6490		
and $\Gamma(\beta) = \int_0^\infty u^{\beta-1} e^{-u} du$	β	1.5787	0.8921	7.2251		
Gumbel or EV1: 1 x = s x = s	З	40.485	413.69	33.981		
$f_X(x) = \frac{1}{\alpha} \exp[-\frac{x-c}{\alpha} - \exp(-\frac{x-c}{\alpha})]$	α	39.144	652.34	11.839		
Lognormal: $f(x) = \frac{1}{\sqrt{1-x^2}} \exp\left(-\frac{(y-\mu_y)^2}{2}\right)$	μ_y	3.8562	6.1470	3.6416		
$x\sqrt{2\pi\sigma_{y}} \left(2\sigma_{y}^{2} \right)$ $y = \log x, x > 0, -\infty < \mu_{y} < \infty, \sigma_{y} > 0$	σ_y	0.7971	1.0873	0.3697		
	Simon	ovic Mav 6	-8 2008			

Marginals - nonparametric

Nonparametric kernel estimation of flood frequency

$$\hat{f}(x) = (nh)^{-1} \sum_{l=1}^{n} K\{(x - x_l) / h\}$$

- Orthonormal series method
 - $\int \Phi_s(x) \Phi_j(x) dx = 0 \quad \forall s \neq j \quad \int \{ \Phi_j(x) \}^2 dx = 1 \quad \forall j$

$$\Phi_0(x) = 1 \qquad \Phi_j(x) = \sqrt{2} \cos(\pi j x)$$

Results

12

Results

Distribution		RMSE			AIC			BIC	
Function	Р	V	D	Р	V	D	Р	V	D
Kernel	0.054	0.103	0.026	-583.03	-454.18	-730.34	-583.03	-454.18	-730.34
Orthonormal	0.020	0.021	0.019	-781.24	(-773.36)	-788.02	-781.24	-773.36	-788.02
Exponential	0.047	0.045	0.273	-610.31	-618.72	-257.97	-607.70	-616.12	-255.37
Gamma 🤇	0.017	0.039	0.023	-813.25	-647.89	-746.61	-808.04	-642.68	-741.40
Gumbel	0.066	0.171	0.027	-540.47	-349.01	-719.57	-535.26	-343.80	-714.36
Lognormal	0.021	0.025	0.023	-771.86	-730.35	-746.27	-766.64	-725.14	-741.06

- P follows gamma distribution (parametric) and
- V and D follow distribution function obtained from orthonormal series method (nonparametric)
- Mixed marginals

Results

Second test

Sl. No.	Marginal Distribution	χ^2 - Value	Significance Level, α	Cutoff obtained from Chi-Square Probability Table, $\chi^2_{(\alpha,k-c)}$	Conclusion
1	Peak Flow Fitted by Gamma Dist. (Parameter = 2)	0.2835	99.5%	0.989	Accepted
2	Volume Fitted by Orthonormal Series Function (Parameter = 0)	1.3790	99.5%	1.735	Accepted
3	Duration Fitted by Orthonormal Series Function (Parameter = 0)	0.0986	99.5%	1.735	Accepted

Simonovic

Copula

- An alternative way of modeling the correlation structure between random variables.
- They dissociate the correlation structure from the marginal distributions of the individual variables.
- n dimensional distribution function can be written:

$$F(x_1,...,x_n) = C(F_1(x_1),...,F_n(x_n))$$

$$C(u_1, \dots, u_n) = F(F_1^{-1}(u_1), \dots, F_n^{-1}(u_n)), \quad 0 \le u_1, \dots, u_n \le 1$$

Copula

Copula [$C_{\theta}(u_1, u_2)$]			$\theta \in$	¢	Generatin Function $p(t), t = u_1$ or	g : u ₂	$\tau = 1 + 4 \int_{0}^{1} \frac{\varphi(t)}{\varphi'(t)} dt$		
Ali-Mikhail-Haq Family: $\frac{u_1u_2}{[1-\theta(1-u_1)(1-u_2)]}$			[-1,1) 1	$n\left\{\frac{\left[1-\theta\left(1-t\right)\right]}{t}\right\}$	<u>t)]</u> } [$[\frac{(3\theta - 2)}{\theta}] - [\frac{2}{3}(1 - \theta^{-1})^2 \ln(1 - \theta^{-1})^2] = \frac{1}{3}(1 - \theta^{-1})^2 \ln(1 - \theta^{$		
Cook-Johnse $\{\max[(u_1)^{-\theta} + (u_2)^{-\theta}\}$	[-1,∞) [\]	{0}	$\frac{\left[\left(t\right)^{-\theta}-1\right]}{\theta}$			$\frac{\theta}{(\theta+2)}$			
Gumbel-Hougaard Family: $exp\{-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\}$		[1 ,∝))	$(-\ln t)^\theta$			$(1 - \theta^{-1})$		
Copulo		RMSE			AIC			BIC	
Copula	P-V	V-D	P-D	P-V	V-D	P-D	P-V	V-D	P-D
Ali-Mikhail- Haq	0.141	0.090	0.056	-68.43	-84.64	-101.76	-67.54	-83.75	-100.87
Cook-Johnson	0.031	0.058	0.055	-122.80	-100.50	-102.31	-121.91	-99.61	-101.42
Gumbel-	0.025	0.027	0.020	-130.53	-128.74	-138.33	-129.64	-127.84	-137.44

Results – joint distributions

Peak flow - Volume

Simonovic

Results – joint distributions

Simonovic

Results – joint distributions

Peak flow - Duration

Simonovic

Results – conditional distributions

Results – conditional distributions

Results – conditional distributions

Western

Results – return period

Simonovic

Conclusions

- Concept of copula is used for evaluating joint distribution function with mixed marginal distributions
 eliminates the restriction of selecting marginals for flood variables from the same family of probability density functions.
- Nonparametric methods (kernel density estimation and orthonormal series) are used to determine the distribution functions for peak flow, volume and duration.
- Nonparametric method based on orthonormal series is more appropriate than kernel estimation.

