

Flood security strategies

An assessment of the strategies of compartmentalization and flood shelters

Lansink J., A.Y. Hoekstra, M.W.J. van Reedt Dortland, C.M. Steinweg

Overview

- Introduction
 - Context
 - Objective
 - Case study area
- Scenarios
- Strategies
 - Compartmentalization
 - Flood shelters in self prepared cells
- Results
- Conclusions and recommendations

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Context

- The development towards actual flooding probability not only overtopping can result in dike failure
- Consider dike ring area as a whole
- Focus shift from probability to consequences
- Is it wise to invest in a lower probability by investing in dike heightening or do we need to invest in reduction of consequences?

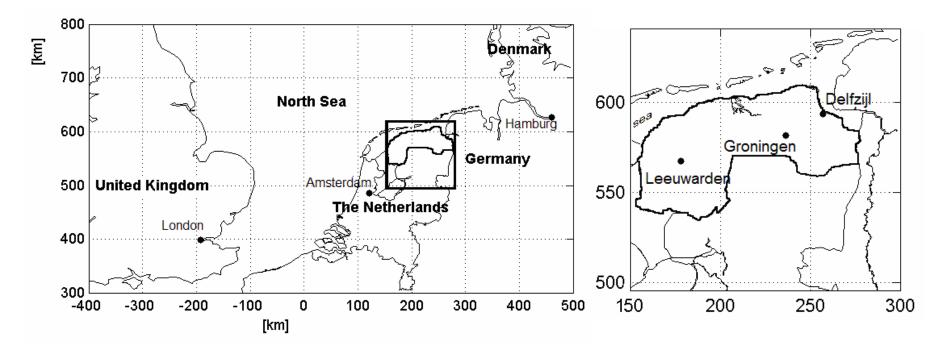
Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Objective

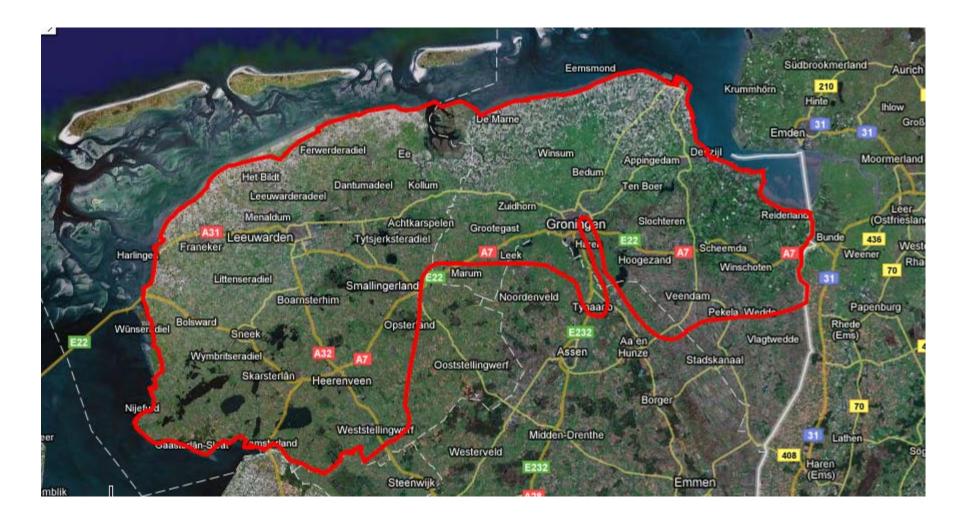
Research objective:

To design, analyze and compare flood security strategies that aim to decrease the <u>consequences</u> of a flood.

I do not discuss:


- Probability of failure
- Cost benefit analysis of the strategies

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

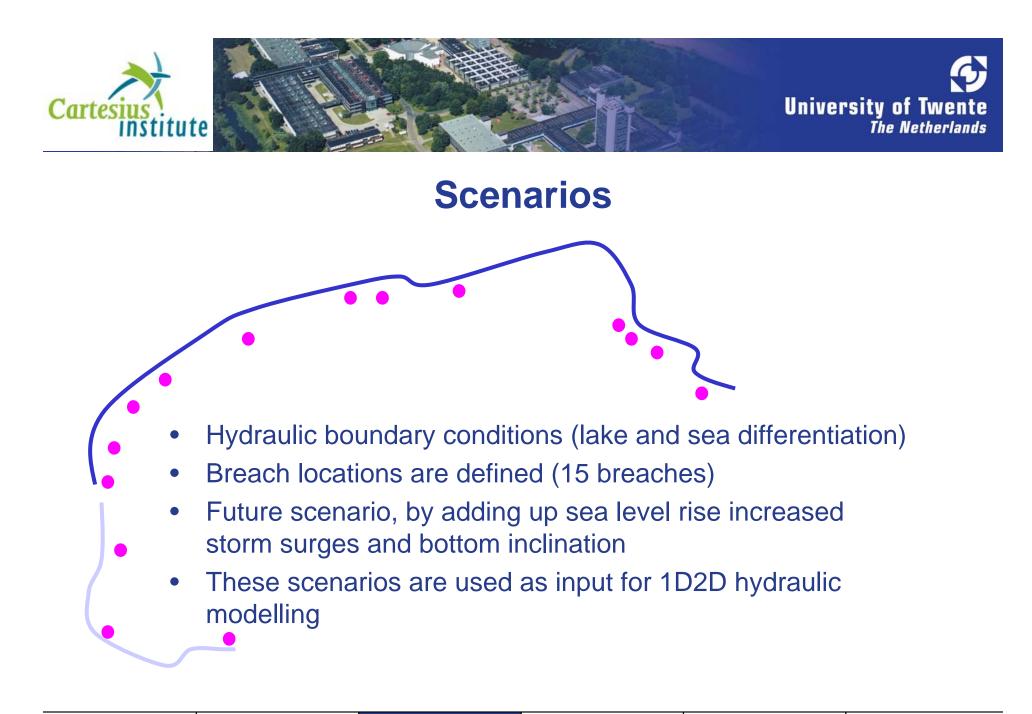

The case study location

Dike ring area 6, the Northern Provinces of the Netherlands (i.e. Fryslân and Groningen)

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Old (secondary) dikes are subject of discussion

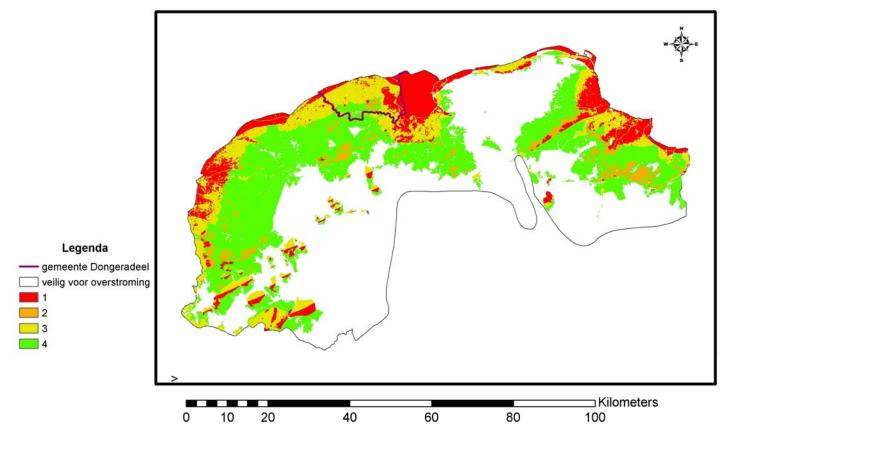

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Artificial hills, 'terpen', are part of this landscape

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

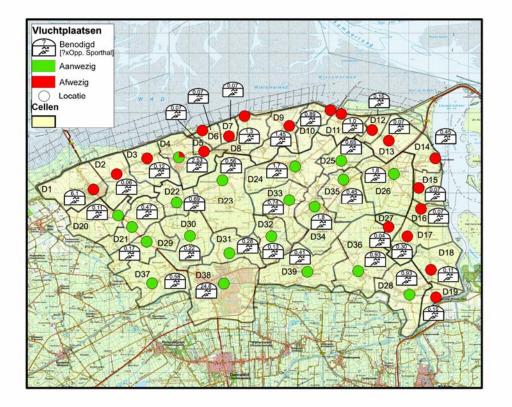
Strategies: compartmentalization

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------


Strategies: Flood shelters

- Support self-preparedness
- Safe havens
 - High grounds
 - Water resistant buildings
 - Artificial hills 'Terpen'
- Division in hazard zones
 - Determining distance

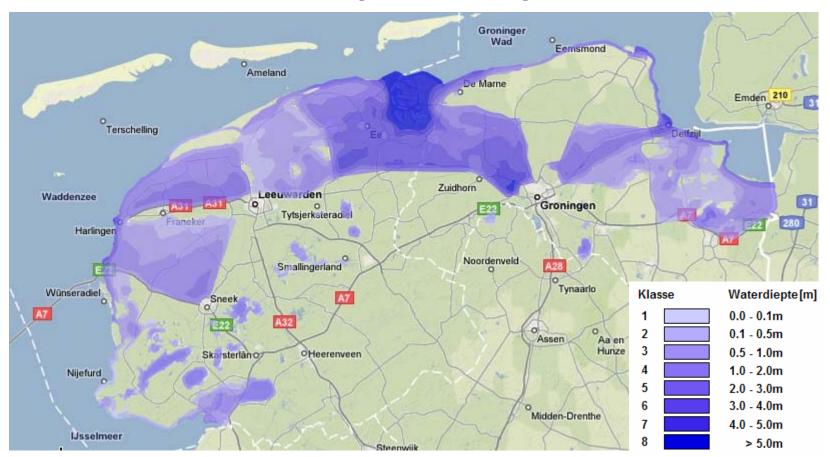
		Time to respond					
		Short < 5h Sufficient >5					
Flood hazard (u*d)	High >7	Zone 1	Zone 2				
Flood haz	Low <7	Zone 3	Zone 4				


Planning of flood shelters

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Neighbourhood scale implementation

Van Reedt Dortland, M. De Fijter, W. and Hoekstra, A. 2008. Vluchtplaatsen in zelfredzame cellen als oplossing bij overstromingen (Dutch), *H2O* 41(7):35-38.

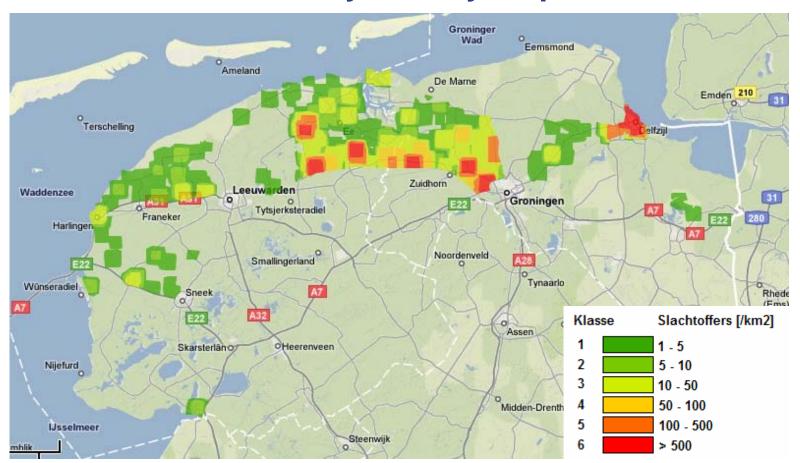

Assessment of strategies: Hydraulic, damage and casualty modelling

- Detailed 1D2D hydraulic modeling (Sobek)
- Damage estimation (HISSSM) containing damage functions:
 - Land use types
 - Maximum waterdepth
 - Rise rate
- Extensive database of GIS maps of results for publication on our website:
 - <u>www.vluchtplaats.nl</u>

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Flood pattern maps

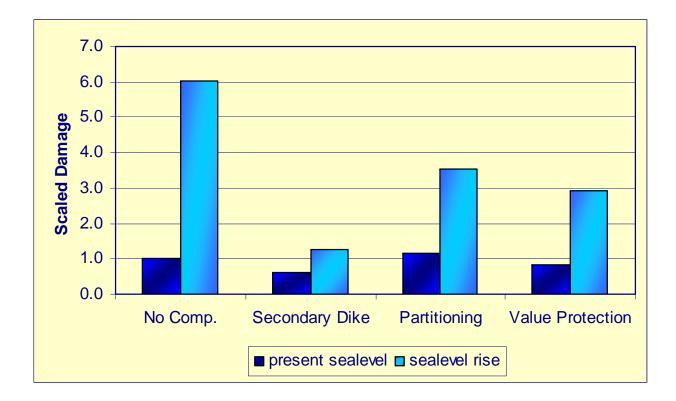
Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------


Damage density maps

Overview Introduction Scenarios Strategies Results Conclusions
--

Casualty density maps

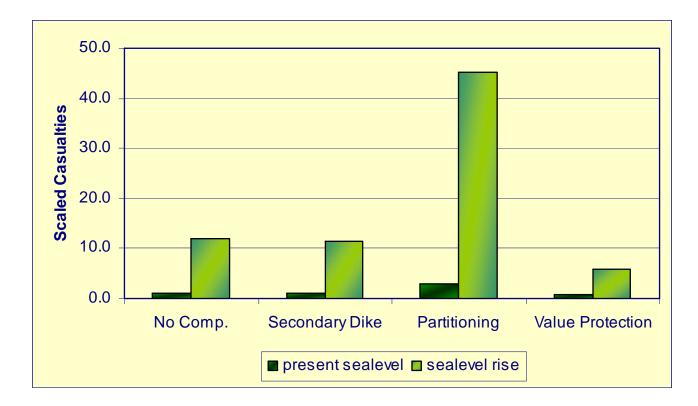
Overview Intro	roduction Scenarios	Strategies	Results	Conclusions
----------------	---------------------	------------	---------	-------------


Summary of damage, affected inhabitants and casualties

		Laissez-faire	Secondary	dike	Partitioning	3	Value prot.	. Large	Value prot.	. Small	Flood shelf	ters
15 Breaks	Damage (Billion €)	4.5	2.8	-39	5.2	15	4.2	-8	3.7	-18	4.5	0
	Inhabitants (*1000)	120	59	-51	116	-3	94	-22	66	-45	120	0
	Casualties (*1000)	0.3	0.3	4	0.8	193	0.3	-7	0.2	-16	0.04	-86
Worst case	Damage (Billion €)	24	5.5	-77	12	-50	12	-50	11	-57	24	0
	Inhabitants (*1000)	444	96.0	-78	218	-51	239	-46	161	-64	444	0
	Casualties (*1000)	8.7	1.4	-85	3.3	-62	0.6	-93	0.4	-96	1.5	-83
15 Breaks + Climate	Damage (Billion €)	27	5.7	-79	16	-41	17	-38	13	-52	27	0
	Inhabitants (*1000)	618	104	-83	215	-65	345	-47	189	-69	618	0
	Casualties (*1000)	3.5	3.3	-5	13	279	2.1	-39	1.7	-51	1.7	-50
Worse case + Climate	Damage (Billion €)	68	11	-83	33	-52	49	-35	33	-51	68	0
	Inhabitants (*1000)	1006	195	-81	333	-67	682	-44	321	-68	1006	0
	Casualties (*1000)	28	10	-65	61	119	23	-22	17	-39	15	-47

Overview	Introduction	Scenarios	Strategies	Results	Conclusions
----------	--------------	-----------	------------	---------	-------------

Damage estimation for compartmentalization



Scaling 1.0 = 4.5 billion euros

Overview Introduction Scenarios	Strategies	Results	Conclusions
---------------------------------	------------	---------	-------------

Casualty estimation for compartmentalization

Scaling 1.0 = 289 persons

Preliminary conclusions

Given future scenarios the estimated damage for this region increases approximately with a factor 4 and the estimated casualties with a factor 10

The secondary dike strategy is promising, given the assumption that the secondary dike fails independent of the primary dike.

Partitioning can be very dangerous, depending on the flood scenario and can lead to an increased hazard

Self prepared cells using flood shelters are very promising, but need administrative arrangements and a proactive attitude of the inhabitants, which will be the greatest challenge

Overview	Introduction	Scenarios	Strategies	Results	Conclusions

Recommendations

The probability of the scenarios has to be calculated in order to compare the risk to conventional strategies such as dike strengthening and dike heightening

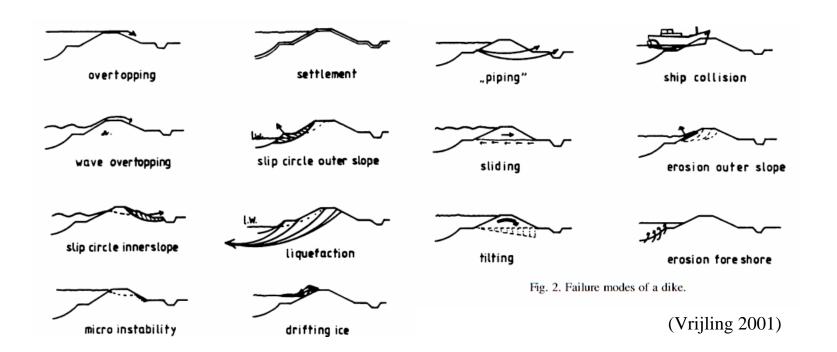
Cost benefit analysis has to be performed to give insight in the feasibility of these strategies

Combination of strategies has not yet been assessed and would be interesting for areas close to the sea.

Do not (yet) destroy the old existing secondary dikes as they might turn out to be life saving by slowing down the flood

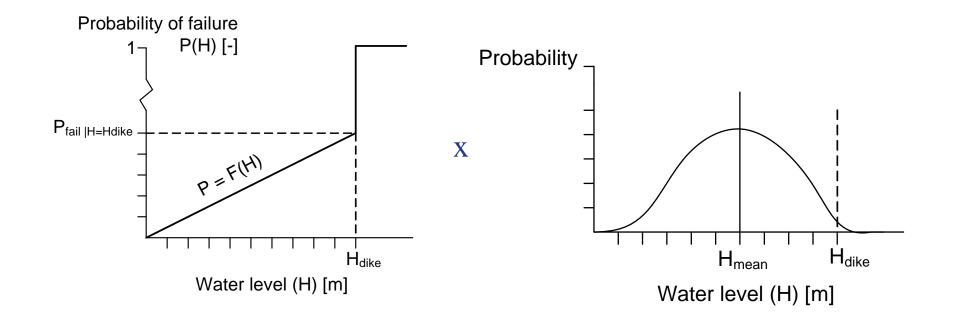
Further development of the administrative arrangements for self preparedness and awareness

Overview Introduction Scenarios Strategies Results Conclusions	Overview	Introduction	Scenarios	Strategies	Results	Conclusions
--	----------	--------------	-----------	------------	---------	-------------


Questions

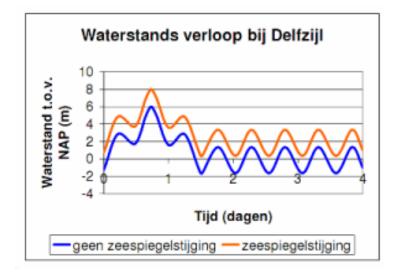
Additional slides

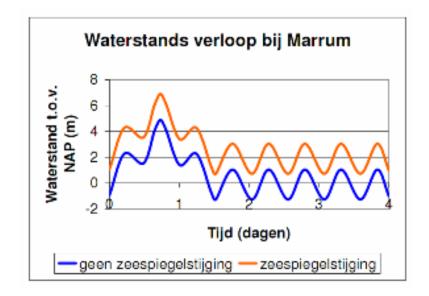
Dike failure mechanisms


Dependent vs independent failure

Dikes fail when overtopping occurs $P_{fail}|(H>H_{dike}) = 1$ All other mechanisms depend on the water level:

P_{fail}|(H<H_{dike}) << 1 independent




Method

Water levels at two breach locations

