IMPROVEMENT OF THE FLOOD FORECASTING AND WARNING SYSTEM OF BANGLADESH BY ADVANCED TECHNOLOGICAL DEVELOPMENT

> Mohammad Khaled Akhtar & Slobodan P. Simonovic

University of Western Ontario, Canada

✓Introduction

✓Background

✓Objective

FFWC and it's activity

Future application & improvement

Conclusion/Big picture

Introduction

Introduction

BRAIIMAPUTR

CHNA

Ganges: 9,07,000 sq. km Brahmaputra: 5,83,000 sq. km Meghna: 65,000 sq. km

Introduction

Sub-tropical monsoon climate winter (November–February) summer (March–June) monsoon (July– October)

Rainfall averages 2160 mm per annum 1728-mm fall during the monsoon

Temperature highest temperature in April (34°C) lowest in January (12°C)

Background

Flood Damage:

- Area affected by flood 38 districts
- Crop Damage:
 - fully-793,140 hectares partly- 656,187 hectares
- Affected People –10 million
- People taking refuge 373,939 in 1601 shelters
- Housing units destroyed 89,048
- Deaths 192

(As of 8th August 2007, GoB)

Causes of Flooding

This paper aims to discuss:

- current flood forecasting activities
- techniques to improve the lead time & accuracy

FFWC and it's activity

FFWC operates model for the estimation of water levels at some selected stations

The model consists of two separate but closely integrated components:

rainfall-runoff modelhydrodynamic model

Model and Boundary Data

Result

Flood Depth Map

Thana Status Map

 Presently FFWC is disseminating 3 day forecast with some weaknesses

It's not possible to extend the model boundary

Data collection system is not automated

 Qualitative rainfall forecast is not enough for the model input

3 day lead time is not sufficient

Future Application/Operation

Doppler Radar

Satellite Based RF and Q estimation

 Application of Numerical Weather Prediction Model Result

The spatial and temporal resolution of an event like flash flood can only be captured by Doppler radar

Satellite-based RF and Q Estimation

Satellite derived 3 hourly rainfall data of TRMM is promising

The reliability of the remotely sensed data ?

TRMM is producing error within acceptable range

practicable to generate boundary discharge with ANN

So, the combination of satellite rainfall and ANN is capable to improve boundary estimation and thereby extending FF lead time

3-individual time horizon are used to predict river Q at the U/S and regional precipitation

<u>1-10day:</u> issued daily

20-30 day: issued 5 day interval

1-6 months: issued at 1 month interval

However, 1-10 day forecasted data has been used for FF, on experimental basis

Rainfall

Discharge

Data (Rainfall):

Satellite observed Rainfall

24hr precip[m];	longitude	[deg]; latitude	[deg]
0.00115002	70.0000	20.0000	
0.00122683	70.5000	20.0000	
0.00130364	71.0000	20.0000	
0.00163024	71.5000	20.0000	
0.00195685	72.0000	20.0000	
0.00735991	72.5000	20.0000	
0.0127630	73.0000	20.0000	
0.00936465	73.5000	20.0000	
0.00596634	74.0000	20.0000	
0.00384683	74.5000	20.0000	I
101	1	[dec.] - letited.	[-]]
48nr precip(m);	longitude	[ded]; latitude	laeali
0.00195182	77.0000	20.5000	
0.00195182 0.00130633	77.0000 77.5000	20.5000 20.5000	
0.00195182 0.00130633 0.000660840	77.0000 77.5000 78.0000	20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079	77.0000 77.5000 78.0000 78.5000	20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318	77.0000 77.5000 78.0000 78.5000 78.5000 79.0000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174 0.00333817	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000 80.0000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174 0.00333817 0.00578501	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000 80.0000 80.5000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174 0.00333817 0.00578501 0.00823185	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000 80.0000 80.5000 81.0000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174 0.00333817 0.00578501 0.00823185 0.00860233	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000 80.0000 80.5000 81.0000 81.5000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	
0.00195182 0.00130633 0.000660840 0.000563079 0.000465318 0.00190174 0.00333817 0.00578501 0.00823185 0.00860233 0.00897282	77.0000 77.5000 78.0000 78.5000 79.0000 79.5000 80.0000 80.5000 81.0000 81.5000 82.0000	20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000 20.5000	

ECMWF forecasted Rainfall

The resolution is 0.5°

The flood forecasting is based on ECMWF model result

Real time rainfall over the catchment is provided by satellite estimation

ECMWF has 51 Ensemble Prediction data set

The 51 scenarios then combined into an average or small number of alternative forecasts

Only 3 sets of data are used in real time forecasting

Forecast Initialization Start Time: 15 7 2006

1 day forecast: (Q observe	-9999.00)	
2.5% Quantile:	34434.1	
16% Quantile:	35656.5	
25% Quantile:	36810.8	
Ensemble mean:	37863.0	
75% Quantile:	38756.7	
84% Quantile:	39312.6	
97.5% Quantile:	42607.8	
2 day forecast: (Q observ	ed value =	-9999.00)
2.5% Quantile:	36834.2	
16% Quantile:	38126.2	
25% Quantile:	38178.5	
25% Quantile: Ensemble mean:	38178.5 <mark>38866.2</mark>	
25% Quantile: Ensemble mean: 75% Quantile:	38178.5 <mark>38866.2</mark> 39751.0	
25% Quantile: Ensemble mean: 75% Quantile: 84% Quantile:	38178.5 38866.2 39751.0 40815.6	

Comparison Station

Station name	River name					
Serajganj	Jamuna					
Aricha	Jamuna					
Tongi	Tongi Khal					
Mirpur	Turag					
Dhaka	Buriganga					
Demra	Balu					
Goalondo	Padma					
Bhagyakul	Padma					
Gorai Railway Bridge	Gorai					
Kamarkhali	Gorai					
Sheola	Khusiyara					
Sherpur	Khusiyara					
Moulvi Bazar	Manu					
Sylhet	Surma					
Sunamganj	Surma					
Bhairab Bazar	Upper Meghna					
Naogaon	L-Jamuna					
Mohadevpur	Atrai					

Forecasted Result

Forecasted Result

Forecast made on: 03-08-2006

+ 			 today 	1-day fore- cast	2-day fore- cast	3-day fore- cast	+ 4-day fore- cast	5-day fore- cast	6-day fore- cast	 7-day fore- cast	 8-day fore- cast	 9-day fore- cast	+ 10-day fore- cast	+
Wate:	r Level in [m]		03-08	04-08	05-08	06-08	07-08	08-08	09-08	10-08	11-08	12-08	13-08 (L
River	Station	D.L	0600	0600	0600	0600	0600	0600	0600	0600	0600	0600	0600	+ cype
 Jamuna 	Seraigeni 	13.75 	12.21	12.08 12.02	12.00 11.78	11.96 11.62	11.99 11.50	12.04 11.41	12.19 11.33	12.40 11.30	12.50 11.26	12.51 11.63	12.41 11.66	Upper Range Lower Range
 	 	 		12.05	11.88	11.74	11.66	11.64	11.74	11.77	11.72	12.01	11.97	Mean
Jamuna 	Aricha 	9.40 	8.77	8.73 8.70	8.72 8.59	8.80 8.51	8.86 8.46	8.85 8.38	8.93 8.31	9.11 8.31	9.20 8.20	9.15 8.18	9.07 8.21	Upper Range Lower Range
 	 	 		8.72	8.67	8.62	8.58	8.55	8.59	8.72	8.65	8.63	8.62	Mean
Iongi Khal 	Iongi 	6.08 	4.87	4.85 4.86	4.84 4.84	4.82 4.81	4.81 4.78	4.80 4.76	4.80 4.73	4.80 4.70	4.81 4.68	4.82 4.65	4.82 4.62	Upper Range Lower Range
1		1		4.86	4.84	4.81	4.79	4.77	4.75	4.74	4.74	4.73	4.70	Mean
<u>Turag</u> 	Mireur.	5.94 	5.27	5.25 5.25	5.22 5.22	5.21 5.18	5.21 5.15	5.20 5.12	5.20 5.09	5.21 5.06	5.23 5.04	5.23 5.00	5.23 4.96	Upper Range Lower Range
 	 	 		5.25	5.22	5.20	5.17	5.15	5.13	5.12	5.13	5.10	5.09	Mean
<u>Buriganga</u> 	Dhaka 	6.00 	4.55	4.52 4.52	4.50 4.49	4.48 4.45	4.49 4.42	4.48 4.39	4.48 4.36	4.49 4.33	4.51 4.31	4.52 4.27	4.51 4.23	Upper Range Lower Range
				4.52	4.50	4.47	4.45	4.42	4.40	4.40	4.41	4.38	4.36	Mean

Performance of Trend Prediction

Further extension of existing (3day)forecasting lead time is required

Newly introduced technology shows its capability of extending lead-time for more than 3 days

However, the forecasting performance starts to deteriorate after 5 day

Conclusions

The model succeeded 58% of the time in predicting correct trend (10-day)

The actual drawback remains on the course grided weather prediction model and satellite RF

Therefore, the overall forecasting performance can be improved by reducing the uncertainty of satellite and ECMWF data over the catchment area

Way Forward

Discharge prediction of the 2 boundary stations are required to be improved for 10-day lead time

Calibration of the weather prediction model along with satellite measured rainfall estimation is vital

Downscaling of the ECMWF forecast can be helpful

THANK YOU ?