Institute for Environmental Studies (IVM)

Effects of Flood Control Measures and Climate Change in the Rhine Basin

Aline te Linde (IVM / Deltares) Jeroen Aerts (IVM) Bart van den Hurk (KNMI)

Toronto - May 8, 2008

vrije Universiteit amsterdam

Outline

Rhine basin

Background

Goal and method

Results

Conclusions

Rhine basin

	Area (km²)	Mean Q (m ³ /s)	Min Q (m³/s)	Max Q (m ³ /s)
Rhine, Lobith	160,800	2,206	788	12,885
Mosel	28,229	334	10	420
	5,917	48		730
Main	27,310	176	44	1,991
Neckar	13,971	141	3	2,105
Rhine, Maxau	50,624	1,297	379	4,430

- Length: 1,320 km
- 58 million inhabitants (10 million flood plain)

Background

Recent floods → major damages Climate change

- IKSR Flood Action Plan
- D NL Working Group on Floods
- EU Flood Directive

Research available

 (Kwadijk 1993, 1998;
 Middelkoop, 2001; Kleinn,
 2003, 2005; Te Linde, 2007)

- Measures are planned and implemented
- Risk assessments

- Uncertainties remain
- Do not take into account effect of measures
- Assumption *infinite dike height*

Background

Recent floods \rightarrow major damages

Date	Area	Fatalities	Damage (Mio USD)
		CLERK W	
Dec 1993	Lower Rhine	14	1,800
Jan 1995	Lower Rhine	28	3,500
May 1999	Upper Rhine	??	???
Aug 2005	Upper Rhine	7	800

(Source: http://www.cru.uea.ac.uk/cru/projects/stardex/ and http://www.dartmouth.edu/~floods/Archives/.)

Human impact

 Reduced flood plain storage capacity (narrowing / urbanisation)

River straightening → 100 km shorter

Goal

ACER

Method - Climate change scenarios for 2050 (KNMI, 2006)

Based on 5 GCMs ightarrow

Air circulation patterns

hanned

Moderate*

Moderate +

Warm

W+ Warm+

G+

W

- Two steering parameters ullet
 - Global temperature
 - Strength of seasonal mean west circulation

- Historical data transformed \bullet
- Delta method

$$T_{scen,d^*}(t) = T_{his,d}(t) + \left(\overline{T}_{scen,d} - \overline{T}_{his,d}\right)$$
$$P_{scen,d^*}(t) = P_{his,d}(t) \times \left(\frac{\overline{P}_{scen,d}}{\overline{P}_{his,d}}\right)$$

2

Decade

Ŷ ŝ 2

Ŷ

പ്പാ

Method - Climate change scenarios for 2050 (KNMI, 2006)

BUT

Applied to complete Rhine ightarrowbasin

> (while they are developed for NL + NW part of D)

- Delta method does not take \bullet into account:
 - Possible changes in variance / extremes
 - Possible changes in number of wet / dry days

- KNMI produced direct RCM \bullet output (bias-corrected)
- RACMO: \bullet
 - SRES-A1B emission scenario
 - forced ECHAM5-GCM member 3
 - spatially distributed

Method - Hydrological modelling

Rainfall - runoff (HBV / VIC)

- Implementing climate change scenario
- Landuse change

1D Hydrodynamic model (SOBEK) Measures

- Dike heightening
- Dike relocation
- Landuse change flood plain (friction)
- Bypass
- Detention area
- Flooding (calibrated on 2D model)

Method – stochastic rainfall generator

- 1,000 years Precipitation and Temperature (resampeld data)
- HBV + SOBEK → 1,000 years discharge data
- Estimate return periods (T) (1/200 - 1/500 - ...)

Landuse change

Effect on mean discharge

Landuse change

Effect on peak discharge

Climate change – change in mean discharge

Lobith

vrije Universiteit *amsterdam* 👪

Infinite dike height: detention – flooding

Infinite dike height: detention – flooding

vrile Universiteit amstardam

Extreme value distribution (Gumbel) yearly maximum Q

1000 yrs resampled

Climate change Flooding / dike height Detention

Conclusion

- Land use change \rightarrow no effect on peak discharge
- Resampling
 - possibility to analyse ensemble of events / bandwidth
 - narrows confidence interval extreme value distribution fit
- Detention area
 - effect strongly depends on event size
 - planned areas are not effective at extreme discharges > ~ Q100
- Events > ~ Q100 \rightarrow Flooding
- Dike heightening will increase extreme peak discharge downstream
- Climate change → peak events (flooding) expected to occur more frequently

Thank you

aline.te.linde@ivm.vu.nl

www.klimaatvoorruimte.nl www.adaptation.nl\acer

