4th International Symposium on Flood Defence:

Managing Flood Risk, Reliability and Vulnerability Toronto, Ontario, Canada, May 6-8, 2008

Integrating Hydraulic and Economic Analysis for Selecting Flood Protection Measures in the Context of Climate Change

J Ernst¹ - Speaker BJ Dewals^{1,2} E Giron³ W Hecq³ M Pirotton¹

- 1. Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH) University of Liege, Belgium
- 2. Belgian Fund for Scientific Research F.R.S. FNRS
- 3. Centre for Economic and Social Studies an the Environment Université Libre de Bruxelles, Belgium

INTRODUCTION

- Climate models predict increases in peak discharges in rivers
 - → Need for flood protection measures
 - → Need for Decision Support Systems for their selection
- In this context, a new high precision tool is developed
 - → Hydraulic and economic analysis integrated by geomatic methods
 - → Integrated assessment of possible flood protection measures

The national Belgian project "ADAPT"
TOWARDS AN INTEGRATED DECISION
TOOL FOR ADAPTATION MEASURES

HYDRAULIC MODEL

Modeling system named WOLF fully developed at the HACH unit

Continuous developments based on multiple PhD theses

• WOLF2D module

- 2D hydrodynamic results are suitable inputs for the subsequent micro scale integrated analysis
- Handling of GIS data and management of layers ,...

Water depth [m]

Flow velocity [m/s]

► Combination of complete shallow water equations and very accurate geographic data

GEOGRAPHIC DATA

• LiDAR - Light Detection And Ranging

• Remote sensing tool, DSM generation

• Similar technique as RADAR, but laser pulses

- Altitude accuracy 15 cm
- Grid 1 x 1 m

DSM + Bathymetry + Aerial imagery texture

Top10v-GIS - National Geographic Institute IGN

- Vector data: collection of points, lines, polygons from IGN in GIS file format (.shp)
- Scale 1:10000
- 18 layers (administration data, altimetry, electricity, land use, structure,...)

Class of object selection from Top10v-GIS

- Residence
- Industry
- Road network
- Agriculture (crops, field)
- Forestry

Université

Land use map (II)

PICC - Ministry of Facilities and Transport

- Vector data
- Cornice elevation
 - → identify each adjoining houses

Land registry

- Location of individual buildings and plots
- Economic information
- Value of the assets

LiDAR Surface elevation + PICC vector

Complementary data sources

Data	Format	Geometric	Semantic	Feature
LiDAR	Raster	Good	Poor	Accurate elevation (DSM)
Top10v-GIS	Vector	Good	Good	Very rich land use data
PICC	Vector	Good	Middle	E.g. cornice height
Land registry	Vector	Poor	Good	Mainly economic information

Absolute damage assessment

Specific value determination
 Value of the assets by surface unit

Relative damage * assets value

REAL FLOOD EVENTS

- Case studies : application of the damage evaluation models chain
 - 1. Hydraulic WOLF2D model has been validated for many years (benchmarks and field studies)
 - 2. Elements-at-risk identification
 - 3. Loss estimation model (disaster fund give compensation)
- •River Ourthe Meuse basin
 - 3 reaches (16 km of river with 2m modeling mesh size)
 - 4 major flood events : 1993 742 m³/s
 - 1995 520 m³/s
 - 2002 570 m³/s
 - 2003 508 m³/s

Hydrology, Applied Hydrodynamics and Hydraulic Constructions - HACH www.hach.ulg.ac.be

Case studies

• Validation of the flow model based on past events

Simulated flood extent and water depth

- Inundation in Rendeux (River Ourthe)
- Flood of February 2002
- Discharge: 165m³s⁻¹

Observed flood extent

Applicability: elements-at-risk identification

- Combination of inundation extent and land use maps
- Selection if at least one mesh is wet in the vicinity of the assets
- 3 classes of water depth
 - < 0.3 meter
 - > 0.3 and < 1.3meter
 - > 1.3meter

Usually used in inundation analysis

• Applicability: economic damage assessment

Economic assessment of the damage to houses (Case study: reach 1)

Economical hypothesis:

Damage function: ICPR Rhine Atlas

Specific value: Netherlands

Comparative analysis

• Data from Disaster fund

all the affected houses do not get compensation

Computed damage

CLIMATE CHANGE ACCOUNT

- Climate change scenarios
 - Perturbation factors affecting the flood peak discharges
 - Discharge assumptions will be confirmed / improved by hydrologic models

Introduction • Hydraulic model • • Geographic data • • • • Methodology • • • • Past events • • • Climate change • • Conclusions •

• Houses counting for each scenario (3 classes of water depth)

Mitigation measures evaluation

Comparison of real configuration and with protection wall

Real configurations

1993 - 742m³/s	No protection wall
1995 - 520m³/s	No protection wall
2002 - 570m³/s	Partial protection wall
2003 - 508m³/s	Protection wall

CONCLUSIONS

Conclusions

- Geomatics tools and data devoted to a micro scale analysis with very limited field survey
- The high resolution geographic data leads to very detailed investigation
 - Validated hydrodynamics results Hydraulic
 - Applicability demonstration in the context of climate change *Economic*

Perspectives

- Validating and refining the overall procedure
- Quantifying uncertainties
- Embedding in a Decision Support System dedicated to the selection of most cost effective flood protection measure

