PC-RIVER: PROBABILISTIC RELIABILITY ANALYSIS FOR RIVER DIKES

Part 2: Hydraulic Uncertainties

- Uwe Merkel -

Institute of Hydraulic Engineering

Institute of Geotechnical Engineering

Outline

1. PC-River Project

- 2. Reliability of water level prognoses
- 3. 2-dimensional HN Monte-Carlo Simulation
- 4. Geotechnical input parameters
- **5. Conclusions and Outlook**

Partners:

Dam Authority of Saxony, Pirna

Regional Administrative Authority Tübingen

Rijkswaterstaat, Dienst Weg- en Waterbouwkunde, Delft, NL

UNI

Stuttgart

1. Objectives : Adapting PC-Ring for non lowland Rivers

Risikomanagement extremer Hochwasserereignisse

rimax

1. The Probabilistic Key-note

Limit State Equation:

 $\beta \cdot \sigma_7$

 μ_{z}

$\mathbf{Z} = \mathbf{R} - \mathbf{S}$

R: Resistance		(pressure, erodibility
S: Stress		(water level, velocity)
Z<0	"Failure"	
Z>0	"No Failure"	

Input Variables:

μ:	average
σ:	standard deviation

Probabilistic Solution:

- Monte Carlo Simulations;
- FORM, SORM, NI, a.o.

Which simulation tools fit best?

- Slopes & Oxbows

- 4km width floodplains - W.L. transverse gradients up

-> 2D-HN-Modelling needed

2007 Merkel U., Oberle P.; Aqua Terra Proceed.

-> faster & more accurate 2D hydrodynamic numerical meshes

PC-River

Schmertmann, 1978. Guidelines for Cone Penetration Test, Performance and Design. Report FHWA-TS-78-209, US Department of Transportation, Washington

Comparison of the failure mechanisms

UNI

- PC-Ring adaption for general use under non-lowland conditions
- Extending, validating and automating the hydraulic uncertainty analysis
- Flexible connection to hydraulic models
- Interface for geotechnical FE-Analysis
- Promotion of a probabilistic dike design

Provision of a tool for risk-based river flood protection

Thanks for your attention!

University of Stuttgart Institute of Hydraulic Engineering Institute of Geotechnical Engineering

uwe.merkel@iws.uni-stuttgart.de